Chemistry Chapters 12-15 Study Guide

Equations (provided on test)

Comparing Rates of Diffusion <u>Rate A</u> = square root of <u>molar mass B</u> Rate B molar mass A

Dalton's Law of Partial Pressures $P_{total} = P_1 + P_2 + P_3...$

Boyle's Law $P_1V_1 = P_2V_2$

(for a given amount of gas held at constant temperature)

Charles's Law $V_{\ell} = V_{0}$

 $\frac{\underline{V}_1}{\underline{T}_1} = \frac{\underline{V}_2}{\underline{T}_2}$

(for a given amount of gas at constant pressure)

(T is in Kelvin)

Gay-Lussac's Law

 $\frac{\underline{P}_1}{\underline{T}_1} = \frac{\underline{P}_2}{\underline{T}_2}$

(for a given amount of gas at constant volume)

(T is in Kelvin)

Combined Gas Law

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

(for a given amount of gas) (T is in Kelvin)

Avogadro's Principle: 1 mol of any gas occupies 22.4 L

> Ideal Gas Law PV = nRT

(Temperature in Kelvin)

Values of R

Units	Numerical Value	
L-atm/mol-K	0.08206	
J/mol-K*	8.314	

Concentration Description	Ratio			
Percent by mass	Mass of solute/mass of solution x 100			
Percent by volume	Volume of solute/volume of solution x 100			
Molarity	Moles of solute/liter of solution			
Molality	Moles of solute/kilogram of solvent			
Mole fraction	Moles of solute/(moles of solute + moles of solvent)			

Dilution Equation $M_1V_1 = M_2V_2$ (where M is molarity, and V is volume)

Henry's Law

$$S_1 = S_2$$

 $P_1 = P_2$
(where S is solubility and P is pressure)

Equation for Calculating Heat $q = c \times m \times change in T$ (q is heat absorbed or released, c is specific heat of the substance, m is mass of sample change in T is change in temp $(T_{final}-T_{initial}))$

Enthalpy (heat) of reaction

$$H_{rxn} = H_{final} - H_{initial}$$

Measuring heat • Metric system: calorie (cal)

Heat required to raise the temperature of 1 gram of pure water 1°C
Food Calories differ from heat calories

1 Calorie = 1000 cal

SI unit: joule (J)
 1 J = 0.2390 cal
 1 cal = 4.184 J

Concepts

Kinetic Molecular Theory

- Particles of matter are <u>ALWAYS in motion</u>
 Volume of individual particles is ≈ zero.
- □ <u>Collisions of particles with</u> <u>container walls cause the</u> <u>pressure exerted by gas.</u>
- Particles exert no forces on each other.
- Average kinetic energy is proportional to Kelvin temperature of a gas.

tooeboo

PROPERTIES	SOLID	LIQUID	GAS
Mass	Definite	Definite	Definite
Shape	Definite	Accquires the shape of the conatiner	Accquires the shape of the conatiner
Volume	Definite	Definite	Indefinite
Compressibilty	Not Possible	Almost Negligible	Highly Negligible
Fludity	Not Possible	Can flow	Can flow
Rigidity	Higly Rigid	Less Rigid	Not Rigid
Diffusion	Slow	Fast	Very Fast
Space bewteen particles	Most Closely packed	Less Closely packed	Least Closely packed
	の		•••••
Interparticle force	Definite	Slightly weaker than in solid	Negligible

Type of Force	Applied to	Strength
Dispersion Forces	All molecules	0.1 – 5 kJ/mol
Dipolar Forces	Polar molecules	5 – 20 kJ/mol
Hydrogen Bonding	Polar molecules with N – H, O – H or F – H bond	5 – 50 kJ/mol

Table 2.6 Summary of the Three Major Intermolecular Forces

capillary action

Phase Diagram of Water

"Like dissolves like"

Factors that affect Solvation Agitation Surface Area Temperature

Solubility of gas DECREASES as temperature INCREASES

The specific heat of any substance is the amount of heat required to raise the temperature of one gram of that substance by one degree Celsius.

Molar heat of vaporization: heat required to vaporize one mole of a liquid (- heat of condensation)

Molar heat of fusion: heat required to melt one mole of a solid substance (- heat of solid)