Chemistry: Unit 1 Notes (Ch. 1-3)

Chemistry: the study of matter Substance: another name for chemical

Model: representation of different phenomena in the world

Types of variables:

Pure vs Applied Chemistry

Pure Chemistry

Studying or learning material for the sake of knowledge (for your own benefit)

Example:

A scientist discovers a new element and identifies it as Iron

Applied Chemistry

Studying or learning material for an intended purpose (for the benefits of others)

Example:

A scientist realizes that they can crush up iron, purify it, and use it to give to people that lack a normal amount of iron in their bloodstream

Chapter 2 Notes: Analyzing Data

	_: a defined unit in a system of measurement that is
based on	an object or event in the physical world.

SI Base Units

Quantity	Base Unit	Based on what?
	Second (s)	Frequency of radiation given off by a cesium-133 atom
	Meter (m)	Distance that light travels in a vacuum in 1/299,792,458 of a second
	Kilogram (kg)	A platinum and iridium cylinder kept in France stored in a vacuum under a triple bell jar
	Kelvin (K)	Fahrenheit scale- water freezes at 32 degrees and boils at 212 degrees Celsius scale: Freezing point 0 degrees, boiling point 100 degrees Zero Kelvin is where are all particles are in lowest possible energy state, water freezes at 272.15 K and boils at 373.15 K K = C + 273
Amount of a substance	Mole (mol)	
Electric current	Ampere (A)	
Luminous intensity	Candela (cd)	

SI Prefixes

Prefix	Symbol	Numerical Value in Base Units	Power of 10 Equivalent
Giga		1,000,000,0001	10^9
Mega		1,000,000	10^6
Kilo		1000	10^3
-	-	1	10^0
Deci		0.1	10^-1
Centi		0.01	10^-2
Milli		0.001	10^-3
Micro		0.000001	10^-6
Nano		0.00000001	10^-9
Pico		0.000000000001	10^-12

Derived Units

a unit that is defined by a combination of _____

Quantity	Derived Unit
Volume- space occupied by an object	m^3 or L
Density - physical property of matter that is amount of mass per unit volume	g/cm^3 Density = mass/volume

Scientific Notation

can be used to express any number as a number between 1 and 10 (known as the coefficient) multiplied by _____ raised to a power (known as the exponent)

Number	Scientific Notation
460,000,000,000,000,000,000	4.6 x 10^23
0.0000000000000000000000000000000000000	2 x 10^-23

Dimensional Analysis

a systematic approach to problem solving that uses conversion factors to move, or convert, from one unit to another
a ratio of equivalent values having different unit
Example: 1 km/1000 m or 1000m/1 km
Analyzing Data how close a measured value is to an accepted value
difference between an experimental value and an accepted value
Error = experimental value - accepted value
= error/accepted value x 100
how close a series of measurements are to one another

Accurate Precise Not Accurate Precise Accurate Not Precise Not Accurate Not Precise

Significant Figures

all known digits plus one estimated digit

Rules	Example
Nonzero numbers are always significant	72.3 g has 3
All final zeros to the right of the decimal are significant	6.20 g has 3
Any zero between significant figures is significant	60.5 g has 3
Placeholder zeroes are not significant. To remove placeholder zeros, rewrite the number in scientific notation	0.0253 g and 4320 g (each has 3)
Counting numbers and defined constants have infinite number of significant figures	6 molecules

Rounding Numbers

Rules	Example
If the digit to the right of the last significant figure is less than 5, do not change the last significant figure	2.532 → 2.53
2. If the digit to the right of the last significant figure is greater than 5, round up the last significant figure	2.536 → 2.54
3. If the digits to the right of the last significant figure are a 5 followed by a nonzero digit, round up the last significant figure	2.5351 → 2.54
4. If the digits to the right of the last significant figure are a 5 followed by 0 or no other number at all, look at the last significant figure. If it is odd, round it up, if it is even, do not round up	2.5350 → 2.54 2.5250 → 2.52
Adding and Subtracting	Round answer to fewest number of decimal places to right of decimal
Multiplying and Dividing	Answer should have same number of sig figs as measurement with fewest number

Graphs

visual display of data

*Special Note: ____ for line graph = rise/run or change in y/change in x

Chapter 3: Matter- Properties and Change

Three States of Matter

- Particles in a solid are tightly packaged and u and u
 Particles in a solid will vibrate but cannot move past each other.
- Solids retain their shapes.

- Particles in a liquid are close together with no regular pattern.
- Particles in a liquid flow and can easily move or slide past one another.
- Liquids assume the shape of their containers.

- Particles in a gas are well separated with no regular pattern.
- Particles in a gas vibrate freely at high speeds.
- Gasses assume the shapes of their containers.

Vapor: gas state of substance that is solid or liquid @ room temp

Intensive and Extensive Properties

Intensive properties do not depend on the amount of matter in a sample.

Temperature

Boiling Point

Concentration

Luster

Extensive properties depend on how much matter a sample contains.

Weight

Length

Volume

Entropy

sciencenotes.org

Chemical and Physical Changes

Chemical change: A chemical reaction forms new products.

Combustion

Rusting

Rotting

Digestion

Physical change: Matter changes form but not chemical identity.

Melting

Boiling

Shredding

Chopping

sciencenotes.org

Phase Change

Law of Conservation of Mass

Matter is neither created nor destroying by chemical reactions or physical changes.

- The mass of the system is the same before and after the reaction.
- The number and type of atoms does not change.

© Byjus.com

This is Dmitri Mendeleev's original 1869 periodic table.

Title translates: "An experiment on a system of elements based on their atomic weights and chemical similarities."

<u>Dmitri Mendeleev</u>'s periodic table is the forerunner to the modern periodic table. It is a "<u>periodic</u>" table because it groups elements in rows and columns that showcase recurring properties, such as valence, electronegativity, and ionization energy.

Mass of Compound = sum of masses of elements

Percent by Mass = ratio of the mass of each element to the total mass of compound expressed as percentage

% mass = mass of element/mass of compound x 100

Homework 1 Tips

Density Scientific Notation

Homework 2 Tips

Percent Error Significant Figures & Rounding

Homework 3 Tips

Law of Definite Proportions Law of Multiple Proportions