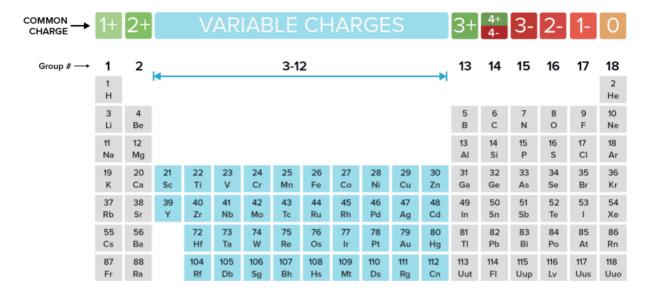
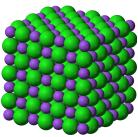
CHEMISTRY UNIT 3 NOTES



Cations are atoms that contain a positive charge.
The positive charge is a result of the atom containing more protons than electrons

Anions are atoms that contain a negative charge.
The negative charge is a result of the atom containing more electrons than protons


For an anion, the ending becomes "-ide"

VOCABULARY

: the electrostatic force that holds
oppositely charged particles together in an ionic compound.
: compounds that contain ionic bonds
: a special ionic bond that occurs between metals and oxygen
: what we call most other ionic compounds
that contain only two different elements, a metallic cation and a nonmetallic anion

Properties of Ionic Compounds

• Ions are packed in a regular repeating pattern for balancing forces of attraction and repulsion called a ______. Each positive ion is surrounded by negative, and each negative ion is surrounded by positive.

•	Ionic solids do not conduct electricity, but melted
	or in solution they are excellent conductors.
	an ionic compound whose aqueous
	solution conducts an electric current.

•	Melting point, boiling point, and hardness depend
	on the strength of attraction between particles.
	Ionic crystals have high melting and boiling
	points, are,, and

- Forming ionic bonds is ______, or energy is released, because it is forming something more stable
- ______ the energy required to separate 1 mol of the ions in an ionic compound. The greater the lattice energy, the stronger the forces of attraction

Characteristic	Lattice Energy	
Bigger Ion	Lower lattice energy	
Bigger Charge	Higher lattice energy	

Formulas for Ionic Compounds

	: the	chemical f	ormula fo	r an ionic
compound,	representing	the simple	st ratio	of the ions
involved.	Ex: MgCl ₂			

_____: a one-atom ion such as Mg^{2+}

_____: equal to the charge of a monatomic ion and the number of electrons transferred from the atom to form the ion

- 1. The symbol of the cation is written first
- 2. followed by the symbol of the anion.
- Subscripts represent the number of each ion. If there is no subscript, it is assumed to be one.
- 4. Ionic compounds must have no charge.

Cross Over Method for Charges

Examples: NaF, KI, MgCl₂, AlBr₃

lon	Name	lon	Name
NH ₄ ⁺	ammonium	104-	periodate
NO ₂ -	nitrite	C ₂ H ₃ O ₂ -	acetate
NO ₃ -	nitrate	H ₂ PO ₄ -	dihydrogen phosphate
OH-	hydroxide	CO ₃ ²⁻	carbonate
CN-	cyanide	SO ₃ ²⁻	sulfite
MnO ₄ -	permanganate	SO ₄ ² -	sulfate
HCO ₃ -	hydrogen carbonate	S ₂ O ₃ ²⁻	thiosulfate
CIO-	hypochlorite	022-	peroxide
CIO ₂ -	chlorite	CrO ₄ ²⁻	chromate
CIO ₃ -	chlorate	Cr ₂ O ₇ ²⁻	dichromate
CIO ₄ -	perchlorate	HPO ₄ ²⁻	hydrogen phosphate
BrO ₃ -	bromate	PO ₄ 3-	phosphate
103-	iodate	AsO ₄ ³⁻	arsenate

Because a polyatomic ion exists as a unit, never change subscripts of the atoms within the ion. If more than one polyatomic ion is needed, place parentheses around the ion and write the subscript outside the parentheses.

OXYANIONS - POLYATOMIC ION COMPOSED OF AN ELEMENT BONDED TO ONE OR MORE OXYGEN ATOM

Oxyanion Nomenclature (Naming)

- · Compare the sets of oxyanions below. Notice the pattern in their names.
 - ·NO₂ (nitrite) and NO₃ (nitrate) · SO32- (sulfite) and SO42- (sulfate) · ClO₂- (chlorite) and ClO₃- (chlorate)
 - The one with fewer oxygens ends in -ite.
 - The one with more oxygens ends in -ate.

NAMING IONIC COMPOUNDS

- 1. Name the cation followed by the anion.
- 2. For monatomic cations, use the element name.
- For monatomic anions, use the root of the element name plus suffix "-ide"

Ex: CsBr = cesium bromide

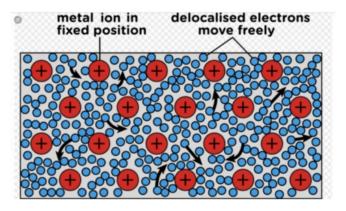
4. If something has more than one oxidation number, write the number in roman numeral in parentheses.

Ex: Fe0 = iron(II) oxide

5. When it contains a polyatomic ion, use the name of the polyatomic ion in place of the cation or anion

Naming Ionic Compounds

Write the name of the cation, followed by the name of the anion ending in "ide.



Learn More At ChemistryIsMyJam.com

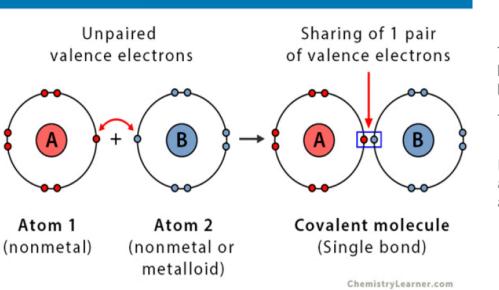
METALLIC BONDS

• Metallic bond- the attraction of a metallic cation for delocalized electrons

PROPERTIES OF METALS

Moderately high melting and boiling points

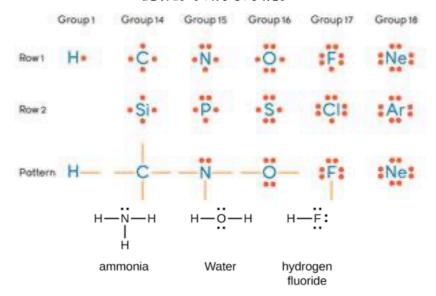
Malleable, ductile, durable, hard, and strong

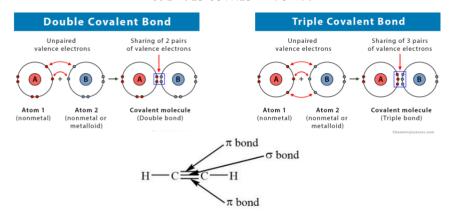


ALLOYS

a mixture of elements that has metallic
properties like stainless steel, brass, and cast iron
some of the original metallic solid are replaced by other metals of similar size
when small holes in metallic crystal are filled with smaller atoms

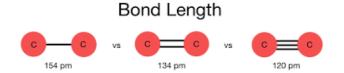
Single Covalent Bond


Molecule


Typically happen between

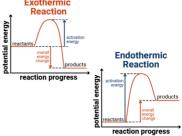
Forces of attraction and repulsion

LEWIS STRUCTURES


MULTIPLE COVALENT BONDS

BOND STRENGTH

The more bonds there are, the shorter the bond length!


The shorter the bond length, the stronger the bond!

BONDS AND ENERGY

Energy is released when a bond forms, but is required for a bond to break. The energy required to break a covalent bond is called bond-dissociation energy.

Exothermic

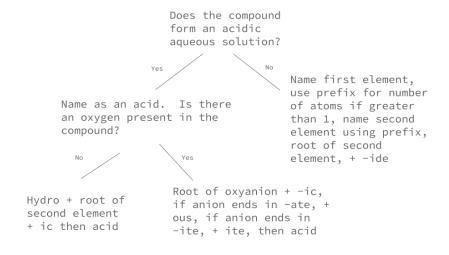
NAMING BINARY MOLECULAR COMPOUNDS

- 1. The first element in the formula is always named first.
- 2. The second element is named using its root and adding the suffix -ide.
- 3. Prefixes indicate number of atoms.

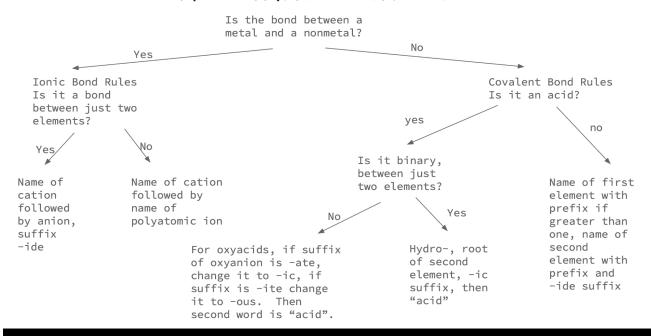
Ex. N₂O is dinitrogen monoxide

Prefixes - Number of Atoms		
mono-	1	
di-	2	
tri-	3	
tetra-	4	
penta-	5	
hexa-	6	
hepta-	7	
octa-	8	
nona-	9	
deca-	10	

NAMING BINARY ACIDS (WHICH CONTAIN HYDROGEN AND ONE OTHER ELEMENT)

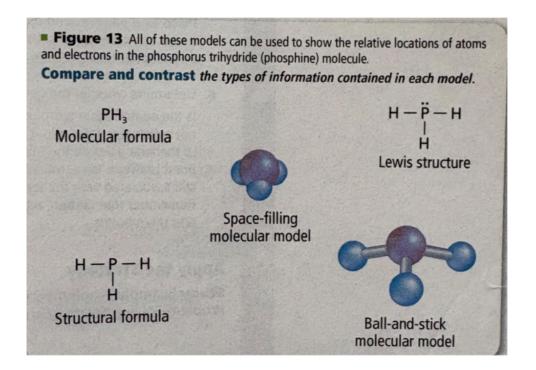

- The first word has the prefix hydro-. The rest of the first word is the form of the root of the second element with the suffix -ic
- 2. The second word is always acid.

Ex. HCl is hydrochloric acid


NAMING OXYACIDS (AN ACID THAT WITH HYDROGEN AND OXYANION)

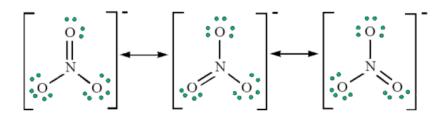
Oxyanion is a polyatomic ion that contains oxygen.

- 1. The first word is the root of the oxyanion. If there is a prefix, use the prefix. If it has the suffix -ate you replace it with -ic. If it ends with -ite, replace it with -ous.
- 2. The second word is acid.
- Ex. HNO3 is nitric acid



NAMING COMPOUNDS FLOWCHART

NAME TO COMPOUND FLOWCHART



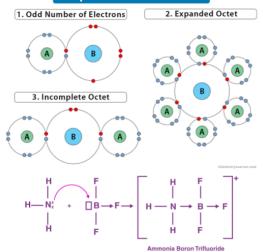
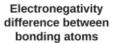
STEPS FOR DRAWING LEWIS STRUCTURES

- 1. Atom farthest away from fluorine is center (hydrogen is never in center).
- 2. Total number of valence electrons.
- 3. Divide by 2 to find number of pairs.
- 4. Place bonds between atoms.
- 5. Place remaining pairs around atoms.
- 6. Is octet rule satisfied? May need to adjust for double and triple bonds.
- * If it is a polyatomic ion, make sure to consider the charge when totaling the electrons.

RESONANCE STRUCTURES

When more than one valid Lewis structure can be written.

Exceptions to the Octet Rule

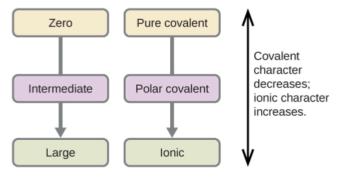
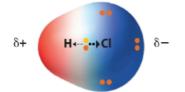

Table 6 Molecular Shapes

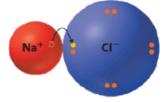
Table 6 Molecular Shapes

Total Pairs Pa

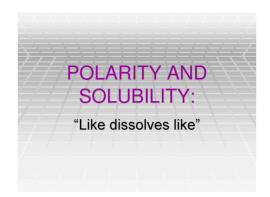
Bond type



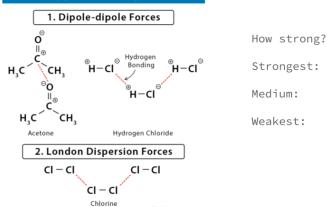
Bond Type	Electronegativity Difference
pure covalent	< 0.4
polar covalent	between 0.4 and 1.8
ionic	> 1.8


Non-Polar Covalent Bond

Bonding electrons *shared equally* between two atoms. *No charges on atoms.*


Polar Covalent Bond

Bonding electrons *shared unequally* between two atoms. *Partial charges on atoms.*

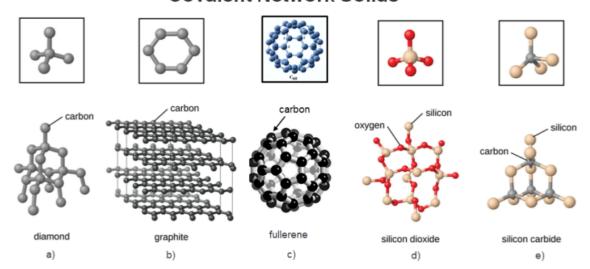

Ionic Bond

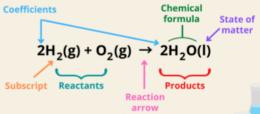
Complete *transfer* of one or more valence electrons. *Full charges on resulting ions.*

INTERMOLECULAR FORCES OR VAN DER WAALS FORCES

Intermolecular Forces Types & Examples

Covalent Network Solids



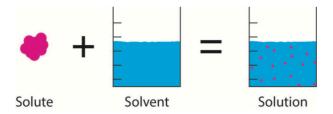

FIGURE 4: A covalent crystal contains a 3-dimensional network of covalent bonds, as illustrated by the structures of diamond, graphite, fullerene, silicon dioxide and silicon carbide

- · COLOR CHANGES (COLOR APPEARS OR DISAPPEARS)
- · TEMPERATURE CHANGES
- · GAS,GAS BUIBBLES PRODUCE
- · FIRE EXPLOSION
- PRECIPITATE IS FORMED A SOLID FORMS OUT OF 2 LIQUIDS

What Is a Chemical Equation?

A chemical equation is a written representation of a chemical reaction.

List reactants on the left side of the reaction arrow and products on the right side.



(g)	gas
(I)	liquid
(s)	solid
(ag)	agueous

- · Word Equation:
- hydrogen + oxygen → water
- Skeleton Equation:
- $H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(1)}$
- Balanced Equation:
- $\bullet \underline{\hspace{1cm}} H_{2(g)} + \underline{\hspace{1cm}} O_{2(g)} \to \underline{\hspace{1cm}} H_2 O_{(l)}$
- $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$

WRITING CHEMICAL EQUATIONS

- 1. Write the skeleton equation.
- 2. Count atoms of reactants and products.
- 3. Add/Adjust coefficients.
- 4. Reduce coefficients to lowest possible ratio.
- 5. Check work.

In aqueous solutions, only double replacement reaction occurs. Three types of products that form in aqueous solutions are, a precipitate, water, or a gas.

Reactions that form precipitates:

Example: $2 \text{NaOH}(aq) + \text{CuCl}_2(aq) \longrightarrow 2 \text{NaCl}(aq) + \text{Cu}(OH)_2(aq)$

2) Reactions that form water:

Example: $HCl(aq) + NaOH(aq) \longrightarrow NaCl(aq) + H_2O(l)$

Reactions that form gases:

Example: $2 \operatorname{HI}(aq) + (NH_4)_2 S(aq) \longrightarrow H_2 S(g) + 2 \operatorname{NH}_4 I(aq)$

Net Ionic Equation and Complete Ionic Equation

Molecular Equation or Balanced Equation

 $AgNO_{3}(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_{3}(aq)$

Complete Ionic Equation

Ag⁺(aq) + NO₃⁻(aq) + Na⁺(aq) + Cl⁻(aq)
$$\rightarrow$$

AgCl(s) + Na⁺(aq) + NO₃⁻(aq)

Net Ionic Equation

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

sciencenotes.org

Example #1: Create an overall balanced equation from the following elementary steps.

Elementary Step 1: $3Ag + Al(NO_3)_3 --> 3AgNO_3 + Al$ Elementary Step 2: $2AgNO_3 --> 2Ag + O_2 + 2NO_2$

Elementary Step 3: 2NO₂ --> 2NO + O₂

$$\begin{array}{c} A_{q} + A_{1}(NO_{2})_{3} + 2A_{1}NO_{2} + 2NO_{2} \\ \rightarrow A_{1}NO_{3} + A_{1} + 2A_{2} + 2O_{2} + 2NO_{2} + 2NO_{2} \\ A_{3} + A_{1}(NO_{3})_{3} \rightarrow A_{3}NO_{3} + A_{1} + 2O_{2} + 2NO_{2} \end{array}$$

@Scudy.com